Les Systèmes MF-FeF₃ (M = Li, Na, K, Rb, Cs, Tl, NH₄)

ALAIN TRESSAUD, JOSIK PORTIER, ROBERT DE PAPE, ET PAUL HAGENMULLER

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351, cours de la Libération, 33-Talence, France

Received January 16, 1970

The binary systems MF-FeF₃ (M = Li, Na, K, Rb, Cs, Tl, NH₄) have been investigated. The structures of the fluoroferrites $M_2Fe_5F_{17}$ (M = K, Rb, Cs, Tl), MFeF₄ (M = Na, K, Rb, Cs, NH₄), $Na_5Fe_3F_{14}$, M_2FeF_5 (M = K, Rb, Cs) and M_3FeF_6 (M = Li, Na, K, Rb, Cs, Tl, NH₄) can be deduced from networks of $(FeF_6)^{3-}$ octahedra. The Néel temperatures decrease with the number of nearest neighbours iron atoms; these temperatures can be predicted according to the molecular field approach.

Ce mémoire relatif aux fluoferrites d'éléments monovalents se place dans le cadre d'une étude générale des propriétés des composés fluorés des éléments de transition (1, 2). Dans des publications antérieures nous avons décrit divers systèmes fluorés à base de fer divalent et trivalent (3-6), dégageant une classification structurale relativement simple basée sur l'arrangement des octaèdres fluorés (FeF₆) (7). Ceux-ci, lorsqu'ils ne sont pas isolés, sont généralement liés par leurs sommets. Les seules exceptions, LiFe₂F₆ dans lequel les octaèdres comportent des arêtes communes et CsFeF₃ où ils ont des faces communes, correspondent à un cation de très petite ou de très grande taille.

La plupart des travaux antérieurs relatifs aux fluoferrites avaient été effectués en solution aqueuse et conduisaient à des résultats souvent contradictoires en raison de la facilité d'échange entre ions OH^- et F^- (8, 9). Aucune étude systématique des systèmes MF-FeF₃ (M = Li, Na, K, Rb, Cs, Tl, NH_4) n'avait été entreprise jusqu'ici à l'état solide. Nous nous sommes efforcés en outre de relier les propriétés magnétiques de ces composés à leur arrangement structural.

I. Preparation

Les fluoferrites sont obtenus par synthèse directe à partir des fluorures élémentaires. Les réactions sont effectuées en tubes scellés d'or à 700°C sauf pour les composés à base de thallium et d'ammonium qui, en raison de leur faible stabilité thermique, ont été étudiés à 300°C. Les phases de formule M_2FeF_5 ont été préparées à 600°C pour le même motif.

II. Étude Cristallographique

L'étude cristallographique nous a permis de mettre en évidence des phases de formulations $M_2Fe_5F_{17}$, $MFeF_4$, $Na_5Fe_3F_{14}$, M_2FeF_5 et M_3FeF_6 , M ne correspondant pas nécessairement à l'ensemble des cations envisagés.

A. Phases de formule $M_2Fe_5F_{17}$ (M = K, Rb, Cs, Tl)

Les spectres de diffraction X des phases de formule $M_2Fe_5F_{17}$ présentent de grandes analogies avec ceux des phases hexagonales $M_xFeF_{3\alpha}$ précédemment étudiées (1, 4) et ne se distinguent de celles-ci que par l'existence de raies de faible intensité. Nous avons étudié plus spécialement $Rb_2Fe_5F_{17}$ pour lequel l'obtention d'un monocristal nous a permis de déterminer les paramètres cristallins.

Nous avons effectué des diagrammes de Weissenberg et de cristal tournant. Les clichés révèlent l'existence d'un sous-réseau hexagonal dont les paramètres sont très proches de ceux de $Rb_xFeF_3\alpha$. L'examen des diagrammes de Laue effectués par transmission montre cependant qu'il n'existe pas d'axe de symétrie senaire. $Rb_2Fe_3F_{17}$ cristallise dans le système monoclinique avec une maille pseudo-hexagonale et un angle β voisin de 120°

Rb ₂ Fe ₅ F ₁₇			
Symétrie	Monoclinique $a = 14.80 \pm 0.02 \text{ Å}$ $b = 7.53 \pm 0.02 \text{ Å}$ $c = 14.80 \pm 0.03 \text{ Å}$ $\beta \simeq 120^{\circ}$		
Paramètres			
Densité exp.	$d_{\rm exp}=3.66\pm0.03$		
Nombre de motifs par maille	$Z = 4$ $(d_{calc} = 3.68)$		

TABLEAU I

Ces caractères cristallographiques sont réunis au Tableau I.

Compte tenu de la complexité de cette structure il nous était difficile de préciser les rapports existant entre $Rb_2Fe_5F_{17}$ et les phases hexagonales $M_xFeF_{3\alpha}$.

L'examen de la structure des phases $MoW_{11}O_{36}$ et $MoW_{14}O_{45}$ est cependant susceptible d'apporter une solution à ce problème. Ces deux phases, qui ont été étudiées par J. Graham et A. D. Wadsley, dérivent également des phases hexagonales $M_xWO_{3\alpha}$ (10). L'arrangement des atomes d'oxygène est conservé mais un atome de tungstène sur douze est remplacé par le molybdène dans $MoW_{11}O_{36}$, un sur quinze dans $MoW_{14}O_{45}$. La figure 1 (a) représente la structure de $MoW_{11}O_{36}$. Les octaèdres MoO_6 s'alignent en formant des plans parallèles au plan xOz.

Il est possible de déduire de la maille monoclinique de $Rb_2Fe_5F_{17}$ une maille orthorhombique dont les paramètres sont très voisins de ceux de $MoW_{11}O_{36}$

FIG. 1. (a) Structure de $MoW_{11}O_{36}$; (b) Structure proposée pour $Rb_2Fe_5F_{17}$.

(Tableau II). Dans le réseau des phases $M_2Fe_5F_{17}$ où les groupements $(FeF_6)^{3-}$ se substitueraient aux motifs $(WO_6)^{6-}$, les octaèdres $(MoO_6)^{6-}$ seraient remplacés par des atomes de rubidium dans les plans parallèles à xOz; ceux-ci seraient liés aux atomes de fluor voisins dont les octaèdres comporte-

	MoW ₁₁ O ₃₆	Rb₂Fe₅F	17	$Rb_2Cr_5F_{17}(11)$
Symétrie	Orthorhombique	Monoclinique	Orthorhombique	Orthorhombique
Paramètres	2a = 14.58 Å b = 25.26 Å 2c = 7.66 Å	a = 14.80 Å b = 7.53 Å c = 14.80 Å $\beta \simeq 120^{\circ}$	a = 14.80 Å b = 25.63 Å c = 7.53 Å	c = 14.69 Å a = 25.59 Å b = 7.40 Å
Nombre de motifs par maille élémentaire	1	4	8	8

TABLEAU II

TABLEAU III

K ₂ Fe ₅	F ₁₇	$Cs_2Fe_5F_{17}$		Tl₂Fe _s	F17
d_{obs} (Å)	I/I ₀	$d_{obs}(\text{\AA})$	I/I _o	$d_{obs}(\text{\AA})$	<i>I</i> / <i>I</i> ₀
14.2	2	13.63	5	6.40	18
12.76	2	6.54	10	3.745	27
6.37	40	4.39	5	3.57 ₀	10
4.82	10	4.13	8	3.24 ₀	100
3.75	28	3.77	12	3.20 ₀	86
3.69 ₀	80	3.66	10	2.666	13
3.34 ₀	24	3.29 ₅	100	2.644	18
3.232	92	3.168	80	2.462	5
3.19 ₀	100	3.025	10	2.442	30
2.629	28	2.883	5	2.335	3
2.417	9	2.808	15	2.254	1
2.334	9	2.745	5	2.140	1
2.310	<2	2.680	40	2.075	3
2.298	<2	2.497	5	2.047	10
2.219	10	2.411	10	1.882	12
2.125	<2	2.377	12	1.862	20
2.092	20	2.264	5	1.805	2
2.070	10	2.199	<5	1.791	<1
2.036	12	2.171	5	1.633	11
1.937	16	2.081	5	1.623	20
1.901	9	2.057	5	1.607	6
1.874	16	2.014	15		
1.850	20	1.945	10		
1.841	5	1.904	40		
1.799	20	1.877	5		
1.776	4	1.650	30		
1.659	20	1.632	<5		
1.649	6	1.405	10		
1.616	24				

raient donc un sommet libre. Les atomes de rubidium, au nombre de 50%, assumeraient la soudure des feuillets $(Fe_5F_{17})_n^{2n-}$; le reste occuperait les tunnels à section hexagonale. Ceux-ci seraient totalement remplis dans nos conditions expérimentales. Cette hypothèse, schématisée à la figure 1 (b) rendrait parfaitement compte de la formule $M_2Fe_5F_{17}$, ainsi que du nombre de motifs par maille tel qu'il se déduit des mesures de densité; elle serait parfaitement compatible avec les paramètres observés. Elle expliquerait également que la phase M₂Fe₅F₁₇ n'existe que pour des cations de grande taille. Signalons que récemment A. de Kozak et J. C. Cousseins ont isolé une phase $Rb_2Cr_5F_{17}$ qui possède une symétrie orthorhombique et des paramètres également très voisins de ceux de $MoW_{11}O_{36}(11)$.

Le Tableau III groupe les distances réticulaires de $K_2Fe_5F_{17}$, $Cs_2Fe_5F_{17}$ et $Tl_2Fe_5F_{17}$.

TABLEAU IV

NaFeF₄					
Symétrie	Monoclinique, C_{2v}^5				
Paramètres	$a = 7.921 \pm 0.005 \text{ Å}$ $b = 5.353 \pm 0.005 \text{ Å}$ $c = 7.543 \pm 0.005 \text{ Å}$ $\beta = 101.88^{\circ}$				
Densité exp.	$d_{exp}=3.28\pm0.02$				
Nombre de motifs par maille	Z = 4 ($d_{calc} = 3.287$)				

B. Phases de formule $MFeF_4$ (M = Na, K, Rb, Cs, NH_4)

Le fluorure d'ammonium ainsi que tous les fluorures alcalins sauf LiF réagissent avec FeF₃ pour former des composés de formule MFeF₄. Bien que toutes caractérisées par des feuillets d'octaèdres (FeF₆)³ⁿ⁻ séparés par des couches de cations monovalents, ces phases peuvent être classées en deux types structuraux différents: NaFeF₄ est isotype de NaNbO₂F₂, tandis que les autres phases possèdent des structures voisines des fluoaluminates alcalins MAIF₄.

1. $NaFeF_4$. NaFeF₄ fond sans se décomposer à $660^{\circ} \pm 10^{\circ}$ C. Son spectre Debye-Scherrer s'indexe dans le système monoclinique. Les paramètres cristallins de NaFeF₄ sont groupés au Tableau IV. Les caractères cristallographiques et les règles d'extinction (h0l:l = 2n + 1 et 0k0:k = 2n + 1) mettent en évidence une isotypie entre NaFeF₄ et NaNbO₂F₂, dont la structure a été récemment établie par S. Andersson et J. Galy (12).

Le réseau est formé de couches de composition $(FeF_4)_n^{n-}$ se développant perpendiculairement au plan (xOz). Les octaèdres $(FeF_6)^{3-}$, sont reliés entre eux par quatre de leurs sommets. Les atomes de fluor constituent un empilement quasi-hexagonal compact. Les atomes de sodium sont situés au centre d'octaèdres fluorés distordus.

Une étude structurale des phases NaMe^{III}F₄ de type NaNbO₂F₂ (Me^{III} étant un élément de transition) sera publiée prochainement.

2. $MFeF_4$ (M = K, Rb, Cs, NH_4). Lors de publications antérieures nous avions dégagé les caractères structuraux de KFeF₄ (13), ainsi que des variétés haute et basse température de RbFeF₄ (14), précisant les distorsions que présentaient ces phases

>	
Э	
EA	
3	
P	
F	

	KFeF4	RbFeF ₄ ∝	RbFeF4 <i>β</i>	CsFeF4α	NH4FeF4	TIAIF4 (15)
Symétrie	Orthorhombique $C_{2^{\circ}}^{\$}$ ou $D_{2^{h}}^{\$}$	Orthorhombique C3 ⁿ	Quadratique Di _a	Orthorhombique C2v	Orthorhombique C ⁵	Quadratique $D_{4_{\rm A}}^4$
Paramètres (Å)	$a = 7.76 \pm 0.02$ $b = 7.59 \pm 0.02$ $c = 12.30 \pm 0.05$	$a = 7.61_{5} \pm 0.01$ $c = 7.62 \pm 0.01$ $b = 6.24_{5} \pm 0.01$	$a = 3.85 \pm 0.02$ $c = 6.29 \pm 0.03$	$a = 7.73 \pm 0.01$ $c = 7.78 \pm 0.01$ $b = 6.56 \pm 0.01$	$a = 7.58 \pm 0.01$ $c = 7.58 \pm 0.01$ $b = 6.36 \pm 0.01$	<i>a</i> = 3.61 <i>c</i> = 6.37
Densité exp.	$d_{ m exp} = 3.12 \pm 0.03$	$d_{\rm exp}=4.05\pm0.05$	$d_{\rm exp}=3.82\pm0.03$	$d_{\rm exp}=4.88\pm0.03$	$d_{\mathrm{exp}} = 2.68 \pm 0.03$	
Nombre de motifs par maille	$Z = 8$ $(d_{\rm calc} = 3.134)$	Z = 4 $(d_{ m cate} = 3.98)$	$Z = 1$ $(d_{calc} = 3.87)$	$Z = 4$ $(d_{\rm cuto} = 4.92)$	$Z = 4$ $(d_{\rm calc} = 2.72_5)$	= Z

FIG. 2. Vue schématique des phases $MFeF_4$ (M = K, Rb, Cs, NH₄).

par rapport à la structure de $TIAIF_4$ établie par Brosset (15).

Le Tableau V groupe les données cristallographiques des fluoferrites MFeF₄. Les composés à base de rubidium et de césium comportent deux variétés allotropiques. Mais dans les conditions expérimentales dans lesquelles nous opérions, nous n'avons pu stabiliser par trempe la variété haute température β de CsFeF₄.

CsFeF₄ α et NH₄FeF₄ sont isotypes de RbFeF₄ α dont le réseau est représenté schématiquement à la figure 2. Ces phases sont caractérisées par une distorsion des octaèdres fluorés entourant le fer. L'élément monovalent est situé à l'intérieur de prismes parallélipipédiques distordus dont les sommets sont occupés par les atomes de fluor; il occupe une position légèrement décalée par rapport au centre de ces prismes.

Les fluoferrites MFeF₄ (M = Na, K, Rb, Cs) sont donc caractérisés par la présence de couches d'octaèdres fluorés comportant quatre sommets communs. Le passage d'une variété moins symétrique α à une variété β qui l'est davantage est lié à une moindre distorsion des octaèdres (FeF₆)³⁻. Un faible apport d'énergie (agitation thermique) suffit pour entraîner le déplacement correspondant du rubidium qui est très faible, de sorte que l'obtention à 25°C de la variété de haute température nécessite une trempe extrêmement brutale.

Des phases de type ABF_4 ont été isolées récemment lors de l'étude des systèmes MF-Ga F_3 (M = K, Rb, Cs) et MF-Cr F_3 (M = K, Rb, Tl) (16, 11). Il est possible d'indexer les spectres de poudre correspondants par isotypie avec nos propres composés.

Pendant la rédaction de ce mémoire nous avons eu connaissance d'une publication de Babel relative aux phases $MFeF_4$ (17). Ses résultats sont en bon accord avec les nôtres en ce qui concerne KFeF₄. Ils en diffèrent toutefois pour RbFeF₄. L'auteur annonce en effet une phase quadratique comportant les paramètres: a = 7.63 Å et c = 6.27 Å; ces paramètres sont du même ordre que ceux que nous observons nous-mêmes pour la phase α , mais la variété haute température n'est pas mise en évidence.

Lors de l'étude structurale de RbFeF₄ (14) nous avons discuté le travail de Gladney et Street qui décrivaient une préparation de RbFeF₄, TlFeF₄ et NH₄FeF₄ par voie aqueuse; ces auteurs obtiennent en fait des hydroxyfluoferrites (9).

C. $Na_5Fe_3F_{14}$

La phase Na₅Fe₃F₁₄ a été préparée et étudiée par Knox et Geller (18). Ces auteurs annoncent deux variétés allotropiques: une variété de basse température à structure complexe et une variété de haute température isotype de la chiolithe Na₅Al₃F₁₄. Cette dernière structure est caractérisée par des chaînes d'octaèdres (FeF₆)³⁻ reliés entre elles par d'autres octaèdres qui jouent le rôle de ponts de manière à former des feuillets (Fe₃F₁₄)⁵ⁿ⁻. Deux tiers des octaèdres comportent deux sommets communs avec leurs voisins, un troisième tiers en comporte quatre.

D. Phases de Formule M_2 FeF₅ (M = K, Rb, Cs)

Les phases de formule M_2MeF_5 sont relativement rares; exception faite des fluoantimoniates M_2SbF_5 $(M = K, Rb, NH_4, Tl)$, dans lesquels l'antimoine est entouré de cinq atomes de fluor, seuls Tl_2AlF_5 (15) et $(NH_4)_2MnF_5$ (19) avaient été étudiés par voie radiocristallographique. Dans l'un et l'autre réseaux apparaissaient des chaînes d'octaèdres fluorés liés entre eux par deux sommets.

Nous avons mis en évidence trois phases de formule M_2FeF_5 : K_2FeF_5 , Rb_2FeF_5 et Cs_2FeF_5 . Nous n'avons pu obtenir de monocristaux de ces phases en raison de leur faible stabilité thermique, celles-ci se décomposant en dessous de la température de fusion avec formation de M_3FeF_6 et MFeF₄.

 K_2FeF_5 a pu être indexé dans le système orthorhombique par isotypie avec K_2AlF_5 obtenu par Brosset (15). Signalons que récemment deux phases analogues ont été préparées: K_2GaF_5 (16) et K_2CrF_5 (20); elles ont été indexées dans le même système (Tableau VI).

Les spectres de poudre de Rb_2FeF_5 et de Cs_2FeF_5 présentent de grandes analogies; il n'existe pas toutefois d'isotypie entre eux et K_2FeF_5 . Une indexation peut être proposée avec la phase Rb_2CrF_5 dont de Pape et Jacoboni ont récemment obtenu des monocristaux (21) (Tableau VII).

	K_2AlF_5	K ₂ FeF ₅	K_2CrF_5
Symétrie	Orthorhombique	Orthorhombique	Orthorhombique
D	a = 7.10	$a = 7.35 \pm 0.02$	a = 7.37
Parametres	<i>b</i> = 12.60	$b = 12.76 \pm 0.03$	b = 12.84
(A)	<i>c</i> = 19.60	$c-19.66\pm0.03$	<i>c</i> = 19.60
Densité exp.	$d_{exp} = 3.05$	$d_{\rm exp}=3.24\pm0.03$	$d_{exp} = 3.20$
Nombre de motifs par maille	<i>Z</i> = 16	$Z = 16$ $(d_{calc} = 3.30)$	<i>Z</i> = 16

TABLEAU VI

	TABLEAU VII						
	Rb ₂ CrF ₅	Rb₂FeF₅	Cs ₂ FeF ₅				
Symétrie	Orthorhombique	Orthorhombique	Orthorhombique				
Paramètres (Å)	a = 7.515 b = 11.985 c = 5.724	$a = 7.53 \pm 0.02$ $b = 11.985 \pm 0.03$ $c = 5.78 \pm 0.02$	$a = 7.84 \pm 0.02$ $b = 12.49 \pm 0.03$ $c = 5.96 \pm 0.02$				

E. Phases de formule M_3 FeF₆ (M = Li, Na, K, Rb, Cs, Tl, NH₄)

Pour chacun des systèmes $MF-FeF_3$ nous avons mis en évidence des phases de formule M_3FeF_6 . Lors d'une étude récente nous avons déterminé les propriétés cristallographiques, spectroscopiques et magnétiques de ces hexafluoferrites M_3FeF_6 (22).

Ces composés dérivent de la structure cryolithe et sont caractérisés par la présence d'octaèdres $(FeF_6)^{3-}$ isolés les uns des autres. Ils comportent en général deux variétés allotropiques, mais seule la variété haute température β de Li₃FeF₆ se conserve par trempe.

Le Tableau VIII groupe les données cristallographiques de Li₃FeF₆ β qui a pu être indexé par isotypie avec Li₃AlF₆ α (23). Les variétés haute température des phases M₃FeF₆ (M = Na, K, Rb, Cs, Tl, NH₄) possèdent la structure (NH₄)₃AlF₆. A température ambiante Na₃FeF₆ est isotype de la cryolithe Na₃AlF₆, K₃FeF₆, Rb₃FeF₆ et Cs₃FeF₆ cristallisent dans le système quadratique avec les paramètres

$$a_{\text{quadr.}} \simeq \frac{a_{\text{cub.}}}{\sqrt{2}}, c_{\text{quadr.}} \simeq a_{\text{cub.}}$$
 (Tableau IX).

La figure 3 schématise les arrangements

d'octaèdres $(FeF_6)^{3-}$ dans les diverses structures étudiées.

III. Étude Magnétique

Le fluorure ferrique FeF₃ est antiferromagnétique avec un point de Néel à 365° K et apparition d'une composante ferromagnétique en dessous de 362° K (26, 27).

TABLEAU VIII

Li3FeF6 β SymétrieOrthorhombique
 C_{2v}^2 Paramètres
(Å) $a = 9.68 \pm 0.02$
 $b = 8.43 \pm 0.02$
 $c = 5.01 \pm 0.02$ Densité exp. $d_{exp} = 3.06 \pm 0.03$ Nombre de motifs
par mailleZ = 4
 $(d_{cale} = 3.09_7)$

X	
)
Ľ,	
ABI	
Ĥ	

Cs3FeF6	1.67	Quadratique $a\sqrt{2} = 9.31 \pm 0.01 \text{ Å}$ $c = 9.37 \pm 0.01 \text{ Å}$	a = 9.46 _s ≟ 0.010 Å (400°C)
Tl ₃ FeF ₆	1.47	}	<i>a</i> = 8.944 ± 0.005 Å (20°C)
(NH4)3FeF6	1.43	i I	a = 9.10 ± 0.01 Å (20°C) (25)
Rb ₃ FeF6	1.47	Quadratique $a\sqrt{2} = 8.89 \pm 0.01$ Å $c = 8.96 \pm 0.01$ Å	a = 9.11 ₅ ± 0.010Å (500°C)
K3FeF,	1.33	Quadratique $a\sqrt{2} = 8.59_{s} \pm 0.010 \text{ Å}$ $c = 8.66_{0} \pm 0.010 \text{ Å}$ (24)	$a = 8.70_5 \pm 0.010 \text{ Å}$ (300°C)
Na3FeF6	0.97	Monoclinique $a = 5.52 \pm 0.02 \text{ Å}$ $b = 5.74 \pm 0.02 \text{ Å}$ $c = 7.97 \pm 0.02 \text{ Å}$ $\beta = 90.40^{\circ}$	a = 8.03 ± 0.02 Å (700°C)
	$r_{M} + (Å)$	Variété α (20° C)	Variété β cubique

LES SYSTEMES MF–FeF3

FIG. 3. Agencement schématique des octaèdres (FeF₆)³⁻.

Les composés de formule MFeF₄ sont également antiferromagnétiques. RbFeF₄ possède un point de Néel à 190 ± 10K; le moment effectif mesuré dans le domaine paramagnétique ($\mu_{eff} = 5.25 \ \mu_B$) est légèrement inférieur à la valeur théorique pour l'ion Fe³⁺ ($\mu = 5.92 \ \mu_B$). Le point d'ordre antiferromagnétique de KFeF₄ déterminé par Babel se situe à 230K (17).

Knox et Geller ont mis en évidence le caractère ferrimagnétique de $Na_5Fe_3F_{14}$, qui résulte de

l'existence de deux sous-réseaux inégalement occupés. Le point de Curie est à 80K (18).

Les phases de formule M_2FeF_5 caractérisées par une structure à chaînes $(FeF_6)_n^{3n-}$ isolées sont antiferromagnétiques. Les points d'ordre de K₂FeF₅, Rb₂FeF₅ et Cs₂FeF₅ sont situés à basse température, respectivement à 60, 90 et 60K.

Nous avons étendu jusqu'à 4.2K l'étude magnétique des fluoferrites M_3FeF_6 entreprise par Figgis entre 93 et 293K (28). Les phases M_3FeF_6 (M = Li, Na, K, Tl) sont paramagnétiques avec des points de Curie très voisins du zéro absolu, la loi de Curie $1/\chi = C_m \cdot T$ est pratiquement vérifiée jusqu'à 4.2K (22).

Les fluoferrites étudiés obéissent en général aux lois du superéchange et leurs couplages magnétiques sont liés à la nature et au nombre de liaisons entre octaèdres fluorés (29). La théorie du champ moléculaire laissait prévoir que les températures de Néel dépendraient du nombre de voisins magnétiques:

$$k\theta_N = -\frac{2}{3}Z \mathscr{J}S(S+1)$$

où Z est le nombre de cations Fe³⁺ proches voisins de spin $S = \frac{5}{2}$; \mathscr{J} l'intégrale d'échange et k la constante de Boltzmann.

Les températures de transition antiferromagnétique décroissent effectivement depuis FeF₃ qui possède un réseau tridimensionnel d'octaèdres (FeF₆)³⁻ (Z = 6) jusqu'aux structures à chaînes isolées de formule M₂FeF₅ (Z = 2). Les phases MFeF₄ qui présentent un ordre antiferromagnétique bidimensionnel (Z = 4) ont des points de transition intermédiaires. Enfin les phases de formule M₃FeF₆ sont paramagnétiques, les octaèdres étant suffisamment éloignés pour que les interactions soient faibles. Ces résultats sont résumés au Tableau X où nous comparons les températures de Néel mesurées et celles calculées dans l'approximation du champ moléculaire en supposant que l'intégrale d'échange de tous les composés est identique à celle de FeF₃.

Nous avons déjà motivé le caractère ferrimagnétique de Na₅Fe₃ F_{14} .

Z	6		4		2	0
Composés	FeF ₃	KFeF₄	RbFeF₄	K ₂ FeF ₅	Rb₂FeF₅	M ₃ FeF ₆
$\theta_{N_{calc}}$ (K)	365	2	40	1	20	0
$\theta_{N_{exp}}$ (K)	365	230	190	60	90	<4

TABLEAU X

Conclusions

Les structures des diverses phases observées dans les systèmes MF- FeF_3 répondent à la classification cristallographique que nous avons proposée récemment pour les composés fluorés du fer (7). Les atomes de fer sont toujours situés au centre d'octaèdres fluorés. Lorsque ceux-ci sont associés, ils comportent exclusivement des sommets communs. Le schéma structural se déduit de la formule chimique.

L'expérience montre qu'il est possible de lier les propriétés magnétiques aux structures obtenues. A partir du mode d'assemblage des octaèdres fluorés on peut prévoir la nature de ces propriétés et même avec une assez bonne approximation l'ordre de grandeur des températures de transition observées.

Bibliographie

- 1. R. DE PAPE, C. R. Acad. Sci. Paris 260, 4527 (1965).
- 2. J. RAVEZ, thèse de Doctorat ès Sciences, Bordeaux, 1968.
- 3. A. TRESSAUD, R. DE PAPE, J. PORTIER, ET P. HAGENMULLER, C. R. Acad. Sci. Paris 266, 984 (1968).
- 4. R. DE PAPE, A. TRESSAUD, ET J. PORTIER, *Mat. Res. Bull.* 3, 753 (1968).
- 5. J. PORTIER, A. TRESSAUD, R. PAUTHENET, ET P. HAGEN-MULLER, C. R. Acad. Sci. Paris, 267, 1329 (1968).
- J. PORTIER, A. TRESSAUD, R. DE PAPE, ET P. HAGEN-MULLER, C. R. Acad. Sci. Paris 267, 1711 (1968).

- 7. J. PORTIER, A. TRESSAUD, R. DE PAPE, ET P. HAGENMULLER, Mat. Res. Bull. 3, 433 (1968).
- 8. B. COX ET A. G. SHARPE, J. Chem. Soc. 1798 (1954).
- 9. H. M. GLADNEY ET G. B. STREET, J. Inorg. Nucl. Chem. 30, 2949 (1968).
- J. GRAHAM ET A. D. WADSLEY, Acta Crystallogr. 14, 379 (1961).
- 11. A. DE KOZAK ET J. C. COUSSEINS, C. R. Acad. Sci. Paris 267, 74 (1968).
- 12. S. ANDERSSON ET J. GALY, Acta Crystallogr. Ser. B. 25, 847 (1969).
- 13. A. TRESSAUD, thèse de 3° cycle, Bordeaux, 1967.
- 14. A. TRESSAUD, J. GALY, ET J. PORTIER, Bull. Soc. franç. Minéral. Cristallogr. 92, 335 (1969).
- 15. C. BROSSET, Z. Anorg. Allg. Chem. 235, 139 (1937).
- 16. J. CHASSAING, C. R. Acad. Sci. Paris 264, 90 (1967).
- 17. D. BABEL, Z. Naturforsch. 23, 1417 (1968).
- 18. K. KNOX ET S. GELLER, Phys. Rev. 110, 771 (1958).
- 19. D. R. SEARS ET J. L. HOARD, J. Chem. Phys. 50, 1066 (1969).
- 20. A. DE KOZAK, C. R. Acad. Sci. Paris 268, 416 (1969).
- 21. C. JACOBONI, thèse de 3° cycle, Caen, 1970.
- A. TRESSAUD, J. PORTIER, S. SHEARER, J. L. DUPIN, ET P. HAGENMULLER, J. Inorg. Nucl. Chem., en cours de parution.
- 23. J. H. BURNS, A. C. TENNISSEN, ET G. D. BRUNTON, Acta Crystallogr. Ser. B. 24, 225 (1968).
- 24. R. D. PEACOCK, J. Chem. Soc. 4684 (1957).
- 25. L. PAULING, J. Amer. Chem. Soc. 46, 2738 (1924).
- 26. G. K. WERTHEIM, H. J. GUGGENHEIM, ET D. N. E. BUCHANAN, Solid State Commun. 5, 537 (1967).
- 27. L. M. LEVINSON, J. Phys. Chem. Solids 29, 1331 (1968).
- B. N. FIGGIS, thèse de Doctorat, Univ. of New South Wales, Australie, 1955.
- 29. A. TRESSAUD, thèse de Doctorat ès Sciences, Bordeaux, 1969.